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The processes of reflection of three-dimensional electromagnetic waves by locally irregular
media interfaces are investigated. The problem under study is mathematically reduced to
the solution of a boundary value problem for the Maxwell equations in an infinite space
with an irregular boundary. In order to develop a numerical algorithm, the potential theory
and a special Green’s function are applied to reduce the addressed boundary problem to
an equivalent system of two hypersingular integral equations. This system is solved with
the use of the approximation and collocation method. Special attention is focused on
calculation of the kernels of these equations. Results of simulation of the currents induced
on the irregularity and reflected field patterns in the resonance frequency range are

1. Introduction

This paper is an extension of the work originally presented at
the URSI Commission B International Symposium on
Electromagnetic Theory (EMTS 2016) [1]. In this article we model
the scattering of three-dimensional electromagnetic waves on a
finite impedance section of a wavy surface separating two media.
The scattering of electromagnetic waves by a wavy interface
between two different media is an important problem for various
applications. In this article we investigate the incidence of an
arbitrary plane wave on a local inhomogeneity of the interface
assuming sufficiently high conductivity of the underlying medium.
The mathematical formulation of such problems reduces to that of
solving a system of Maxwell equations in non-regular infinite
regions. Depending on the polarization of the incident field, the
boundary-value problems are reduced to independent systems of
hypersingular integral equations solved by specially developed
numerical algorithms utilizing a singularity isolating algorithm.

2. Mathematical model and numerical algorithm
2.1. Mathematical formulation of wave scattering problems

Let us assume that an interface between two media is situated
in Cartesian coordinates [lx, y, z. The interface consists of two
half planes 2 that are specified by the equation y =0 and joined
by an impedance cylindrical wavy section S that stretches along
the z axis. The entire wavy section is located in the half-space
y2>0. The surface S is specified by the equation y=f(x),
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0<x<a, f(0)=f(a)=0, where aisthe x length of irregularity
S. Let @ =27x. The reflecting surface SUX does not depend on
z coordinate. Denote by D, the region over interface SUZX
where the 3D incident electromagnetic field propagates. This
region D, is characterized by permittivity &, permeability g,
and the k, wave number k{ = w’&, 4, where @ is the circular
frequency (Figure 1). The time dependence is exp(—i w t).

(5

Figure 1: Geometry of perfecting surface
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The field of the plane wave

Eo (x,y,2)= Eo exp(iayx —ifyy +iyyz),

1:10 (x,y,2)= Ho exp(iagx —ifyy +iy(z),

oy =k sindysing, [ S, =k cos9,sing,, and y, =k cosg,
is incident on the surface S UZX in region D,. Here, @, is the

angle between axis z and the direction of the incident wave
propagation. When ¢, =7 /2, we obtain a plane reflection two-

dimensional problem. If §, =0, we have the case of the normal

incidence in the plane problem.

In region D, we seek for a solution to the homogeneous

system of Maxwell equations
curl I:I(x,y,z) +iwe; E(x,y,z) = 6,
curl E‘(x,y,z) —iow Ijl(x,y,z) = 6,

which satisfies on the plane section T the condition of perfect
conduction

i< Ex.2)]=
Leontovich condition on local section S with a finite conductance
lﬁ X E(x,y,z)J= W, [ﬁ X [fi ijI(x,y,z)”

W, =41,/ &,. Here, & and u, are the characteristics of the
section S, 7= (n oy ,0) is the outward normal to region D, . The

reflected field satisfies the radiation conditions at infinity.

We look for the total electromagnetic field in D, that has the
same dependence on z as the incident field, that is

E(x Y,z ) E(x y)exp(zyoz) f](x,y,z)zFl(x,y)exp(iyoz).
Then, the boundary condition on S can be represented as follows:
4 . 0H,(x,y) O (x,y)
Ez(xay):klz _27/5 [_170 or - gl—n
] oH.(xy) . OE (x,y)J’
H — _ z z
z(st’) m( Lo, on 170 o7

0/0n=n,0/0x+n,0/0y, 0/0t=n,0/0y—n,0/0x  are

the normal and tangent derivatives, respectively. Accordingly,
boundary conditions on plane section X take the form

OH.(xy) _

E -0
_(x,y)=0, >

uley)=E.(xy),  v(x,y)=H (x,),

70 Then the considered boundary value problem can

We denote

B =ki
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be reduced to solving in region D, of the 2D homogeneous

Helmholtz wave equation

0? 0? u(x, y)}
[axz +8y2 A J{v(x »)

with appropriate boundary conditions on X and S.

2.2. Reduction of the boundary problem for Helmholtz equations
to the system of singular equations in case of E-polarization

In order to obtain a system of hypersingular integral equations
equivalent to the boundary value problem for Helmholtz equation,
we introduce Green’s function g* (M , P) , satisfying in region

D, the inhomogeneous Helmholtz equation

o o?
[axz - 2+ﬂ1J E(M,P)==276(M,P),

the boundary condition for perfect conductor on half-plane X
g"(M,P)=0,

that have the form
g (M, P)——[H“) (Burve»)- 15, MP)]

Here, H (()l)(x) is the zero-order Hankel function of the first kind;

rM,P:\/(xM_xP)zJ"(yM_YP)z’ where (xM,P!yM,P) are

coordinates of M and P

—\/xM —xP

of the P point.

points; "vop =

yM +yp) , (xP,—yP) are the coordinates

Applying in region D, the Green’s formula successively to

functions u(M ), gE(M ,P), taking into account the radiation

conditions and the properties of surface potentials, we obtain a
system of two integral equations for unknown functions
ou(P)/dn and dv(P)/d7 on finite section S for E- polarization

case:

ik\W, ou(M) zy0W2 8v(M)
oW, B2 Ony 287 Oty

%ﬂ( (M.,P)+

iyoW, 0g"(M,P) ov(P)
is onp 07p

(1)

ik W, 8g (M,P) au(P)
onp

Wlﬂl onp

}dp— —u, E,
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l&u(M)_LJ'Hé‘gE(M,P)+ik1W2 ang(M,P)]au(P)+

2 Ony 27rS ony, W1ﬁ12 Ony, Onp onp

. 2 E £
iy W, 0> (M,P) 6V(P):|dSp _o M) yies @

BE Ony Onp  O7p %
E _ . . . .

where u; (x,y)= exp(zaox - zﬂoy)— exp(zaox + zﬂoy). In the

case of the H- polarization we can obtain a system of two integral

equations for unknown functions V(P) and 6u(P)/ Ot on finite

section S.

2.3. The numerical algorithm for the solution of singular
integral equations for the E-polarization

The systems of integral equations are singular and can be
solved through reducing them to the complex system of linear
algebraic equation by means of the collocation and approximation
method.

To this end, we divide the interval [0,a], on which the
equation y= f(x) of the irregular cylindrical surface S is
defined, by points x; =ia/N, x,=0, xy =a, into N equal
parts. The points dividing the curve S have the coordinates
(xi,f (x,»)). Then we replace the integrals entering into the
systems of equations (1), (2) with the sums of the integrals over

the subintervals and set M:MH%, i=1L.,N, MH% are

collocation points. The sought solution on the section S, "
]t

j=0,..,N—1, is approximated by a zero-order spline. As a
result, we obtain a complex system of linear algebraic equations.

When calculating the integrals over a section S P.P.> in which
J I+

ogf(M,P)

the integrand depends on either g” (M ,P) or 5
np

, We

replace the integration with respect to s with the integration with
respect to x by setting dsp =4/1+ (f'(x))2 dxp.

Note that the terms that enter the kernels of integral equations
and depend on gE (M, P) have a logarithmic singularity when the
arguments coincide. Therefore, when developing the numerical
algorithm, this singularity is separated in an explicit form and the
integrals containing it are calculated analytically.

The normal derivatives of the function gE (M, P) have no
singularity when the arguments are equal, and

ogfMm,P) 1
lim L):_K-O(M)’
pP>M  On, 2

where &, (M) is the curvature of the contour S at the point M .
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0% gk (M,P)
ny Onp

The kernels of the system depending on have a

strong singularity. In order to calculate the matrix elements that are
integrals of the functions with a hypersingularity, it is necessary to
develop a numerical algorithm. To this end, we preserve the
integration over the arc s in these integrals. We defined the

surface S in the form x=x(s), y=y(s). The outward normal
to the domain D, we write in the form 7 = —y/ i +x! j , where i

and j are the X and ¥ unit vectors. Note that if the boundary of
S is specified in the form y = f (x), the relationship between the

directional cosines 72 ;7 of the outer normal n to D, is given

We have

62
_[ —6 gE(Mi+1/2>P)dSP =
10N p

ity 3)
. 2
i 0 1
— —HB r s p —
2 I Ony onp 0 (/31 M,-H,Z,P)d P
Pj.Pisl
. 2
i 0 1 R
— — g ¢ Sp.
2 J. Oony,Onp 0 (ﬂl M"*”Z’P)dp
Pj.Pj+1

To develop a special computing algorithm, every integrands is
represented by a sum of two terms: the first one is the total
differential of some function has been calculated analytically; the
function in the second term has a logarithmic singularity and is
integrated by separating this singularity in the explicit form,
thereafter the corresponding integrals are calculated analytically.

In the first term 0/0n,, letus consider the component 0/0x,,

(without the multiplier iz /2 ):
2

0
J e

Pj-Pj+1

H(gl)(ﬂl rMH%,P)dSP =
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J. H(gl)(ﬂl ’”M,_%,Pjyfs,,dsp +

SP/ Pir1

J.é'(M,P)ngdsP =

Spy Py
(s oot

J. H(gl)(ﬂl rMH%,Pjy:S'PdSP +

SP/ Pisl

“4)

0
¥y

SCRH(

Wp

J‘é‘(M,P)ygpdsP.

SP/.P/+1

The points M and P can coincide, hence, there is an integral of the
Dirac delta-function.

Similarly let us consider the component 0/0dy,, in the first
term 0/0n,, :
2

I e

Pj.Pj+1

H(g])(ﬂl rMH%,P)dSP =

9.2 pW

r dsp =
onp Ovp (ﬂl MH%,PJ P

b8

j Hél)(/;l rMi%’ijgP dsp-

SP/’~Pj+l

Pj.Pjt1

RE

P

0

Oxp
S,

J&(M,P)xépdsp =

Spirya (5)

0
(:Bl "™, /+1) oy H(()l)(ﬂl er+%’Pj’j+

| H(gl)(ﬂl rM[%’P)x:gPdsP -

Pl

0

oxp P

Sy,

I&(M,P)xgpdsp.

SP,',P/H
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Using (4)-(5) and the recurrence relations for Hankel functions

Hl(l)(ﬁl ”M,P)x}‘i—_xp'

bl
M,P

(()1)(;31 ’”M,P)= B

Oy
Oxp

iHél)(ﬂl rM,P): B

we obtain the final formula for the calculation of the second
normal derivative of the Green function [2].

Hl(l)(ﬂl VM,P)yA;[.—_yP’
M,P

2.4. Calculation of the reflected field pattern for the E-
polarization

Using the solution to the system of integral equations (1)-( 2) and taking into

account the boundary conditions on the section S, we can obtain the integral
representation for the field (M )=u (M)-u §(M):

N ik W, ﬁgE(M,P)}

} dsp, MeD,.

6u(P)+

1 £

2 ! {g pim onp
iy W, 0g”(M,P)ov(P)
B} onp  O1p

Onp

(6)

We introduce spherical coordinate frame r, 9, @, where angle
5(—7[/ 2<9 <m/ 2) is measured from the y axis and angle

7 (0<¢7<7r/2) is measured from the z axis. We seek for a

representation of the scattered field for |F|  >> 7|, & |F|,, >>1.
Following that, we introduce the notation ||, =, . It can be
shown that the following asymptotic  relationships

"yp zp—(rp,eM) and 7, , = p - "5 €u | are valid. Here, ¢,, is

a unit vector oriented in the direction to point M; i.e.

ey =rylp= Taking into
account the above relationships and asymptotic behavior of the

Hankel function, we can obtain the asymptotic representations for

0g"(M,P)
0

np

(singsingﬁ, cos9 sing, cosa)

in the form

exp[ (ﬂlp Wz D

GAMIE
ooE
£ (M’P)z 2;1/) exp(i[ﬂ1p+%) x
[—iﬂl (ﬁP,EM)exp(—i

852 oo il 2 )|

and also for u, (M) [3].

g"(M,P),

g"(M,P)~ 2;
1P
[exp (—iﬂl(FP, éM))—exp (—'

onp
ATy

()
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We call quantity F % (§ N7 ) that equals
F*(9.5)-

\/;—1'[[{ [exp(—iﬂl (FP’ €m ))_ exp(—iﬂl (’313’ ey »J+

[l 2 oo 0 )
(ipoinJexrl 5, 2o ) S22+
2oLl 2 Jexoli )

. 20 ) expl- i, éM))]%}dSP

the pattern of scattering field u, (M ) Knowing the solution of the

system of singular integral equations (1)-(2), we calculate the
currents induced on the irregular surface and far-field pattern for
the scattered field in the far zone [4].

3. Numerical results

The induced currents and reflected electromagnetic field
patterns are calculated for E- polarization, ¢, = 50+4i, contour

S specified in the XOY plane by the equation f(x)=1-cos x,

0<x<L2r,a=2r.

Figure 2 shows the distribution of the calculated function of
the induced current /(x)= |0u(P)/ 5n| on the boundary S

along the x axis for ak, =37, %zl.S, where A is the

wavelength of the incident field. The results are obtained for

various angles &) and ¢, of the electromagnetic wave incidence:

(curve 1) 3, =0, @, =85"; (curve 2) 8, =30", ¢, =60";
(curve 3) 9, =45, @, =45"; (curve 4) 9, =60°, @, =30".

Figures 3-4 show for ak; =37, % =1.5 reflected field

pattern ‘F E(g ,51 in polar coordinates for the range

—85° <9 <85 and fixed values of @ . Curves I-5

correspond to @ =85°, 60°,45°,30°,5° . Figures 3-4 represent
the results of calculations for the reflected field when a plane wave
incident at the angles 9,=0, ¢, =85 (Figure 3) and

8y =45°,p, =45" (Figure 4).
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Figure 4

Further, the analogous results are presented on Figures 5-
— a —
7for ak, =57, A =2.5.
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Figure 7

4. Conclusion

1. The exact model of plane electromagnetic wave incident
on inhomogeneous conductive surface is investigated.

2. The problem is reduced to the system of singular integral
equations. The analytic solution is provided for a
singularity in the kernels of integral equations.

3. The numerical algorithm for calculation of scattering
characteristics of incident electromagnetic field was
developed and calculation examples were presented.
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